Coupling of primary production and diel nitrate dynamics in the eutrophic lowland river system Bode

Michael Rode, Susanne Halbebel, Muhammad Rehan Anis, Markus Weitere

Helmholtz Center for Environmental Research- UFZ, Magdeburg, Halle

Workshop on temporal high resolution water quality monitoring and analysis 21.-22.07. July 2014 Magdeburg

Eutrophication of coastal zones

 δ^{15} N (‰ vs. air N₂) in top layer sediments (0-1 cm)

10

8

6

4

2

HELMHOLTZ | CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Motivation

- Nitrate uptake studies focus primarily on small streams
- Continues measurements of N uptake are missing
- Studies on nitrogen retention in highly impacted streams and rivers are rare
- New high temporal resolution data of water quality

Objectives

- Ecosystem metabolism
 - Impact of environmental factors on Gross Primary Production
 Stream size
- Nitrate retention due to GPP
- Assess the value of new UV sensors

Measurement Sensors and Automatic Samplers

Sensors Absorptionsspektrum Abwasser mit/ohne CSBeg Nitrat 2,5 Nitrit Absorption [AU] 2 1,5 CSBm / TOCm 1 TSS SAK254 0,5 190 210 230 250 270 310 330 290 Wellenlänge [nm]

Automatic Sampler

TRIOS UV sensors

YSI Sensors

Online-Data

Ecosystem metabolism

Evaluating Gross Primary production

- Continues oxygen measurements
 - GPP calculation using one station dial DO method and energy dissipation method
 - Evaluation of controlling factors light, temperature and discharge

Study sites

Forest stream, Selke Station Meisdorf

Agricultural stream, Selke Station Hausneindorf

Lowland river, Bode Station Stassfurt

- mean discharge = $1,5 \text{ m}^3/\text{s}$
- mean NO₃-N=1,5 mg/l
- reparian vegetation

- mean discharge = $1,7 \text{ m}^3/\text{s}$
- mean NO_3 -N = 3,3 mg/l
- spars reparian vegetation
- mean discharge = $12,5 \text{ m}^3/\text{s}$
- mean $NO_3 N = 3,2 \text{ mg/l}$
- spars reparian vegetation

Continues sensor data offer new insights into Ecosystem metabolism (Selke river)

Ecosystem metabolism in the Selke River (agricultural stream, Selke)

- One station diel DO method (Roberts et al. 2007) and energy dissipation method
- Gross Primary Production (GPP) clearly follows seasonal variation
- NEP was mostly positive during vegetation period
- Clear regression between CR24
 and GPP
 - >strong contribution of autotrophic respirtion on CR

Impact of temperature on GPP (forest stream reach, Meisdorf)

- High GPP during spring
- Much lower GPP than in agricultural stream
- Clear temperature effect only in spring
- Light is the controling factor of GPP
- Autumn peak during leave litter fall

Impact of discharge on Gross Primary Production (agricultural stream, Hausneindorf)

Ecosystem metabolism in the Bode (lowland river)

- two GPP peaks in spring are caused by algae blooms
- Another slight increase of GPP in automn (litter fall)

- Community respiration
 mirrores GPP
- GPP was a strong predictor of CR24-> autotrophic respiration is dominating

Nitrogen cycling in streams.

Diel Method for Inferring Nitrogen Retention Mechanisms

Heffernan and Cohen 2010

N uptake rate related to GPP example forest stream, Selke

Dial nitrate and oxygen amplitudes

Nitrate uptake rate and GPP

1,2

1,1

1,0

0,9

0,8

0,7

0,6

0,5

0,4

Nitrate-N [mg/l]

NO₃ uptake rate related to GPP, Selke River

Forest stream (Meisdorf), April 2011

Agricultural stream (Hausneindorf), 2011

- Low flow conditions
- Lower GPP in forest stream
- Similar slopes of regression functions

Primary Production and Nitrate Uptake at lowland river Bode, Gauge Station Stassfurt

Ranges of NO₃ assimilatory uptake rates with high GPP

comparison of different stream systems

- Uptake rates based on short term dial NO₃ amplitudes
- Agricultural stream shows
 largest uptake ranges
- Uptake rates are in similar orders for all stream systems

Ranges of NO₃ assimilatory uptake rates on a yearly basis (2012)

comparison of different stream systems

- Forest stream shows lowest assimilatory NO₃-N uptake
- Light availability controls areal NO₃-N uptake

Conclusions

- Continues measurements allow new continues insights into stream ecosystem metabolism
- Discharge events can disturb GPP
- Assimilatory N uptake can be evaluated by continues nitrate measurements
- Nitrate concentrations and light availability control N uptake
- N uptake rates vary but were in a similar order for all stream systems

